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A B S T R A C T

Graph theory has been playing an increasingly important role in understanding the organizational properties of
brain networks, subsequently providing new tools for the search of neural correlates of consciousness, particularly
in the context of patients recovering from severe brain injury. However, this approach is not without challenges,
as it usually relies on arbitrarily fixing a threshold in order to retain the strongest connections proportionally
equal across subjects. This method increases the comparability between individuals or groups but it risks the
inclusion of false positive and therefore spurious connections, especially in the context of brain disorders.

Resting state data acquired in 25 coma patients and 22 healthy subjects was compared. We obtained a
representative fixed density of significant connections by first applying a p value-based threshold on healthy
subjects' networks and then choosing a threshold at which all individuals exhibited meaningful connections. The
obtained threshold (i.e. 10%) was used to construct graphs in the patient group. The findings showed that coma
patients have lower number of significant connections with approximately 50% of them not fulfilling the criteria
of the fixed density threshold. The remaining patients with relatively preserved global functional connectivity had
sufficient significant connections between regions, but showed signs of major whole-brain network reorganiza-
tion. These results warrant careful consideration in the construction of functional connectomes in patients with
disorders of consciousness and set the scene for future studies investigating potential clinical implications of such
an approach.
1. Introduction

Neurobiological theories of consciousness suggest that local and
global information processing, enabled through highly connected brain
regions (i.e. hubs), might be crucial to generate and maintain conscious
experience (Dehaene and Changeux, 2011). Among the behavioral con-
tinuum of acquired pathological consciousness perturbations which
could be related to brain injury (Giacino et al., 2014), the state of
unarousable unresponsiveness named coma is the most severe and acute
form of disorder of consciousness (DOC) and therefore constitutes a
clinically and fundamental relevant model of study of conscious access
(Laureys and Schiff, 2012). Following this lead, recent brain functional
connectivity studies in coma patients at rest, have provided promising
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but divergent accounts about the spatial extent and topography of
functional brain changes related to coma (Achard et al., 2012; Amico
et al., 2017; Demertzi et al., 2015; Koenig et al., 2014; Malagurski et al.,
2017; Norton et al., 2012; Silva et al., 2015; Vanhaudenhuyse et al.,
2010).

Graph theory is a robust mathematical framework well-suited to deal
with the complexity intrinsically associated to brain functional connec-
tivity data. This approach enables accurate topological analysis of neu-
roimaging data (De Vico Fallani et al., 2014) and permits the
quantification of relevant information processing-derived parameters
(Rubinov and Sporns, 2010) across multiple scales, spanning from single
brain areas (i.e. nodes) to networks and eventually whole brain analysis.
Nevertheless, despite the promise held by these approaches, there have
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arch 2019

mailto:brigitta.malagurski@uzh.ch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2019.03.012&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2019.03.012
https://doi.org/10.1016/j.neuroimage.2019.03.012
https://doi.org/10.1016/j.neuroimage.2019.03.012


B. Malagurski et al. NeuroImage 193 (2019) 1–8
only been a few graph theoretical studies in patients with chronic DOC
(Achard et al., 2012; Beudel et al., 2014; Chennu et al., 2014, 2017;
Crone et al., 2014) and none of them have fully explored the potential
contribution of such mathematical methods to specifically address the
relationship between coma and the whole brain complex topological
disturbances that may underpin this pathological state of acute DOC.

We aimed to characterize during this extreme condition of acquired
consciousness abolition (i.e. coma), brain's residual ability to segregate
and integrate information at both global and local networks levels. In line
with network-level theoretical frameworks of conscious access (Tononi
and Koch, 2008; Tononi et al., 2016; Dehaene and Changeux, 2011;
Dehaene and Naccache, 2001), we hypothesize that the complete loss of
consciousness that is observed during coma is related to the massive
breakdown of whole brain functional connectivity. Possibly underpin-
ning coma patient's considerable neurological outcome heterogeneity,
we expect to identify among patients a large repertoire of local and global
topological disturbances, spanning from well-preserved to almost
completely dissolute (i.e. randomized) networks, generating less efficient
and costlier functional brain configurations than small-word arrange-
ment (Fornito et al., 2015; Stam, 2014).

2. Methods

2.1. Participants

Patients were included from three critical care units affiliated with
the University Teaching Hospital (Toulouse, France) between January
2013 and January 2015. We compared rs-fMRI data of 25 cardiac arrest
survivors with severe anoxic-ischemic brain injury, who met the clinical
definition of coma (Glasgow Coma Scale score (Teasdale and Jennett,
1974) at the admission to hospital< 8, with motor responses< 6;
Mean¼ 51y; SD¼ 18y; age range¼ 18-80y; 12M) to 22 age-matched
healthy controls (Mean¼ 44y; SD¼ 20y; age range¼ 22-74y; 10M).
Patients were scanned at least 2 days (4�2 days) after complete with-
drawal of sedation and under normothermic condition. The delay be-
tween primary brain injury (i.e. cardiac arrest) and MRI scan was of 6
days (Mean¼ 6; SD¼ 3). Standardized clinical examination was per-
formed on the day of the scanning using the Glasgow Coma Scale and the
Full Outline of Unresponsiveness (Wijdicks et al., 2005). This study was
approved by the Ethics committee of the University Hospital of Toulouse,
France (“Comit�e Consultatif pour la Protection des Personnes”, CHU
Toulouse, ID-RCB: 2013-A00009-34). Written informed consent was
obtained directly from the healthy volunteers and from the legal surro-
gate of the patients.

2.2. Data acquisition

In all participants, 11 min resting state fMRI was obtained using a 3T
magnetic resonance scanner (Intera Achieva; Philips, Best, the
Netherlands). Two hundred and fifty multislice T2*- weighted images
were retrieved with a gradient echo-planar sequence using axial slice
orientation (37 slices; voxel size: 2 x 2 � 3.5 mm; TR ¼ 2600ms;
TE¼ 30ms; flip angle¼ 90�; FOV¼ 240mm). In addition, a 3D T1-
weighted sequence (170 contiguous slices; TR¼ 8.1ms, TE¼ 3.7ms,
FOV¼ 220j232j170mm, flip angle¼ 8�, resolution¼ 1mm3 isovoxel)
was also acquired in the same session and later used for visual assessment
of the structural integrity of regions of interest.

2.3. Data preprocessing and parcellation

Functional data were preprocessed using Statistical Parametric
Mapping (version SPM 12; http://www.fil.ion.ucl.ac.uk/spm/). The
fMRI images were realigned (motion corrected), slice-time corrected,
coregistered to each subject's T1-weighted image and normalized to
standard stereotaxic anatomical Montreal Neurological Institute (MNI)
space. T1-weighted images were segmented to compute grey matter,
2

white matter and cerebro-spinal fluid images, and normalized to MNI
space. The fMRI images were not smoothed in order to minimize the
spillage of the signal of the neighboring ROIs. The brain images were
parcellated according to a whole-brain functional atlas composed of 268
regions (Finn et al., 2015; Shen et al., 2013). In addition, we regrouped
these regions into large-scale resting-state networks, according to the
atlas of Power et al. (2011). The full detailed list of brain regions used in
our study can be found in Supplementary Information (Appendix A).

2.4. Time series extraction and wavelet decomposition

In each brain parcel, regional mean time series were estimated by
averaging, at each time point, the fMRI voxel values weighted by the grey
matter probability of these voxels. This weighting limits the contami-
nation of the time-series by white matter signals and cerebrospinal fluids.
In addition, non-neuronal sources of noise were estimated using the
anatomical component based noise reduction method (CompCor) (Beh-
zadi et al., 2007), which consisted of applying the principal component
analysis (PCA) to characterize the time series data from white matter and
the CSF voxels (i.e. normalized T1 segmented masks). Five principal
components of the signals from the noise voxels were then introduced as
covariates in a general linear model (GLM) as an estimate of the physi-
ological noise (Behzadi et al., 2007). Residual head motion was removed
by regressing out motion parameters, estimated during realignment, and
composite scan-to-scan movement parameters calculated using ART
(integrated within the CONN toolbox, Whitfield-Gabrieli and
Nieto-Castanon, 2012; http://www.nitrc.org/projects/conn). In addi-
tion, we calculated the average scan-to-scan movement (i.e. for the entire
MRI session) for each subject and correlated this with network metrics to
investigate the impact of motion on brain network analysis (please see
Appendix B).

The residual time series were decomposed in four scales using
discrete dyadic wavelet transformation (Achard et al., 2006). We used
the maximal overlap discrete wavelet transform (MODWT) to each
regional mean time series and estimated the pairwise inter-regional
correlations at each of the four wavelet scales. Given that the wavelet
decomposition is dependent on the repetition time (TR¼ 2.6s) of the
rs-fMRI acquisition protocol, we decomposed all regional mean time
series into the following scales: scale 1 (0.1–0.19 Hz); scale 2
(0.05–0.1 Hz); scale 3 (0.02–0.05 Hz); and scale 4 (0.01–0.02 Hz). We
decided to primarily focus on scale 2, because previous studies indicated
that this frequency band contains relevant information for rs-fMRI and is
most sensitive to differences between aberrant and healthy brain func-
tioning (V�a�sa et al., 2018). Still, some analysis has been repeated for scale
3 (see Supplementary Information – Appendix B).

2.5. Graph computation

2.5.1. Threshold selection
Lower levels of overall functional connectivity have been associated

with higher degree of randomness in the individual proportionally
thresholded (i.e. connection density) brain graphs. Edges with low
functional strength have a higher probability of being spurious and often
lead to differences in clustering and global efficiency not necessarily
reflecting real changes in network organization but artificially induced
differences due to low overall functional connectivity (van den Heuvel
et al., 2017).

In order to eliminate the possible group differences in functional
connectivity strength, we first thresholded each subject's matrix at an
FDR-adjusted significance level of p< .05, and termed the surviving
edges as significant connections (Benjamini & Yekuteli, 2001).

Then, we calculated the ratio of the number of these significant
connections to the total number of possible edges in a given graph. The
resulting connection densities were used to select a fixed density
threshold that contained only significant edges for all subjects, including
controls and coma patients (Achard et al., 2006; De Vico Fallani et al.,
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2014).
Importantly, to keep the graph fully connected, we extracted the

minimum spanning tree (MST) for each subject, based on the correlation
matrix with absolute weights. The remaining values of the correlation
matrices were then added at the selected fixed connection density
threshold to the MST skeleton resulting in an undirected binary adja-
cency matrix for all subject in the two groups.

The code used to calculate the significance of edges is integrated in an
R-based package entitled brainwaver, available at https://cran.r-project
.org/web/packages/brainwaver/.

It is worth noting that we calculated the significance of connections
using absolute values of negative and positive correlation coefficients,
which do seem to play a different role in disorder of consciousness (Di
Perri et al., 2016; Malagurski et al., 2017). However, our additional
analysis indicated that there were significantly more positive links which
were also higher in strength in comparison to negative links in both
groups (see Appendix B). Thus, our final thresholded matrices (at 10%)
included only the (binarized) connections that were based on positive
correlation coefficients, for both controls and patients.

2.5.2. Network metrics
The network analysis was done in R (v.3.3.2; The R Project for Sta-

tistical Computing; http://www.R-project.org/) using the brainwaver
(v.1.6) and iGraph (v.1.1.2) package freely downloadable at http://cr
an.r-project.org.

Following global metrics were calculated: clustering and global effi-
ciency. The clustering (global average local efficiency – see description
below) is a topological measure of segregated information transfer. The
global efficiency (GE) is a metric for efficiency of integrative information
transfer across the network. This measure is inversely related to the
characteristic path length (average shortest path between nodes) but is
adapted to fragmented that is disconnected graphs.

To explore the local/nodal network metrics we employed the degree
and the local efficiency. Each of these measures describe different as-
pects of topological node centrality permitting the identification of
nodes that have the highest influence on network-wide processes. The
degree represents the number of links connected to the node, assuming
that nodes with many connections have a higher influence on the
network in comparison to low-degree nodes. The local efficiency mea-
sures the integration capacity between immediate neighbors of a given
node. This metric also reflects the network resilience by indicating how
efficiently neighbors of a given node communicate when this node is
disrupted.

2.5.3. Network reorganization mechanism
To detect network reorganization in comatose patients we have also

computed the hub disruption index (HDI) for nodal measures (Achard
et al., 2012). To calculate HDI for a given metric, for example the degree,
we subtract the healthy group mean degree from the degree of the cor-
responding node in an individual subject, and plot this individual dif-
ference against the healthy group mean. The slope of a straight line fitted
to a given plot is referred to as hub disruption index. A negative HDI close
to �1, indicates a severe network reorganization, meaning that nodes
with highest degree (i.e. hubness) in controls show greatest reduction in
patients, whereas the nodes with lowest nodal degree in controls show
the greatest increase in patients.

2.6. Statistical analysis

Global and nodal statistics (and functional connectivity) were
compared between groups with the aid of the permutation test (10000
iterations) using the package perm (v.1.0–0.0) implemented in R
(v.3.3.2; The R Project for Statistical Computing; http://www.R-project.o
rg/). For each nodal metric, the significance level of p-values was
adjusted to 0.05/N (p¼ .00018), where N represent the number of nodes
included in the analysis. The results were visualized with the BrainNet
3

Viewer (Xia et al., 2013).

3. Results

3.1. Randomness

The results showed that the number of significant connections in
the graphs of coma patients were significantly lower in comparison to
those of healthy controls, exhibiting a lower connection density of
significant connections at an FDR-adjusted significance level of
p< .05 (Appendix B - Table 1). The median connection density of
these thresholded graphs in patients was 14% (range 0–56%),
meaning that the maximum connection density that graphs could be
built to, while ensuring that all subject's connectomes contain only
significant edges was much lower in comparison to the control group.
These results were reproducible across several levels of parcellation of
the functional atlas used in the principal analysis (Finn et al., 2015;
Shen et al., 2013), as shown in the Supplementary Information (Ap-
pendix B - Table 1).

The final fixed threshold for exclusion of patients was set to 10%
significant connections density, the lowest value found in healthy control
subjects. Therefore, to allowmeaningful interpretation of patients’ global
and local network topology that is not related to low functional con-
nectivity, but to node related topological changes, we decided to calcu-
late the graph measures excluding patients (N¼ 12) that did not have at
least 10% of significant connections, leaving a total of 13 patients for
further analysis. The patients that were included in further analysis are
referred to as the “effective” patient subgroup, while the excluded pa-
tients were referred to as the “non-effective” patient subgroup (see
Fig. 1). This nomenclature was chosen as effectiveness refers to the fact
that the effective patient subgroup satisfied the significant connections
density criteria so as to be able to construct the connectivity graphs.

It is worth noting that this first step of global network analysis, ap-
pears to have a potential value for neuroprognostication in this chal-
lenging clinical setting, as five out of six patients who did not have any
significant connections at any level of parcellation (i.e. non-effective
subgroup) did not recover consciousness at 3 months post coma (Ap-
pendix B – Table 2).

Further, we compared the overall functional connectivity strength
(without threshold) between all patients and controls, and between pa-
tients who had satisfied the criteria of edge significance and healthy
subjects. There were no significant differences in the overall (average)
functional connectivity (FC) between the effective patient subgroup and
controls (p¼ .081) (Fig. 1.).

Finally, we examined whether there was a significant association
between the overall FC and graph metrics across the final groups of
subjects. We found a significant relationship between the FC strength and
clustering (r¼�0.59, p¼ .0002), and global efficiency (r¼�0.38,
p¼ .02) in the group of all subjects – controls and the effective patient
subgroup (van den Heuvel et al., 2017). Given that there were no sig-
nificant differences in the average FC strength between the two sub-
groups, this association should not significantly influence the group
comparison results. See supplementary information (Appendix B – Fig. 1)
for the same analysis for scale 3 (0.02–0.05 Hz).

3.2. Disruption of hub rank order

This hub disruption index summarizes the pattern of network reor-
ganization, in subtracting the healthy group mean value from the value
of the corresponding node in coma patients, and plotting this individual
difference against the healthy group mean. The slope of a straight line
fitted to a given plot is referred to as hub disruption index (Achard et al.,
2012). A negative HDI close to �1, indicates a severe network reorga-
nization, meaning that nodes with highest nodal efficiency (i.e. hubness)
in controls show greatest reduction in patients, whereas the nodes with
lowest nodal efficiency in controls show the greatest increase in
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https://cran.r-project.org/web/packages/brainwaver/
http://www.R-project.org/
http://cran.r-project.org
http://cran.r-project.org
http://www.R-project.org/
http://www.R-project.org/


Fig. 2. Hub disruption index (degree, global efficiency and clustering) for each of the subjects in the control and the patient group.

Fig. 1. Functional connectivity (Pearson's r) over all pairs of nodes (without a threshold) plotted against the global metrics – global efficiency (A) and clustering (B) (at
wavelet scale 2). Patients with the significant connections density lower than 10% are marked using the cyan colour. These patients have a lower average functional
connectivity in comparison to the other subgroup of patients and controls. There are no significant differences in the overall (average) functional connectivity between
the effective patient subgroup (in purple) and the control group (p¼ .081).
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patients. The hub disruption index calculated with the global (nodal)
efficiency (p< .0001) and local efficiency (p< .0001) implied signifi-
cant brain network reorganization within the effective patient subgroup
(Fig. 2). Further, HDI calculated using the degree implied the same
significant brain network reorganization within the patient group in
comparison to the control group (p< .0001; Fig. 2), and we found evi-
dence of a critical reorganization of high degree nodes (i.e. hubs).
Namely, cortical regions that were hubs of healthy brain networks
seemed to become non-hubs of comatose brain networks and vice versa
(Fig. 3). However, there seemed to be significant heterogeneity within
the coma patient group (Fig. 2), with some individuals showing severe
reorganization at global level, while others having similar values to
healthy subjects.

3.3. Network topology

There were no statistically significant differences in clustering (at cost
10% permutation test p¼ .88) and global efficiency (permutation test
p¼ .57) between the effective patient subgroup and the control group
(Fig. 4). In addition, we ran a general linear model to determine a
4

statistically significant difference between the effective patient subgroup
and controls in global metrics after controlling for the global functional
connectivity and its interaction with the group variable. The results
showed that there was no significant main effect of the group on clus-
tering (F (1,31)¼ 0.035, p¼ .85) and global efficiency (F (1,31)¼ 0.84,
p¼ .37) after controlling for the covariates. The interaction between the
FC and group was not significant, after the Bonferroni correction, for the
clustering (F (1,31)¼ 0.035, p¼ .85) and for the global efficiency (F
(1,31)¼ 6.26, p¼ 1).

However, Fig. 5 Shows multiple regions that significantly differ be-
tween the patients and the control group at nodal level. Overall, we can
see a disruption in brain node centrality in the patient group reflected in a
combination of decrease and increase of node degree, suggesting specific
regional changes in brain network organization. The decrease of nodal
degree was shown in the right crus (I) of the cerebellum (not classified in
a network), while the increase of nodal degree encompassed the left
angular gyrus (default mode network) and the left fusiform gyrus (not
classified in a network).

The local efficiency indicates how efficiently neighbors of a given
node communicate when this node is disrupted. This decrease in this



Fig. 3. Hub disruption of functional networks in comatose patients. A) The
mean degree of each node in the healthy control group (x axis) is plotted against
the difference between the groups in mean degree of each node (y axis). Normal
hub nodes with high degree in the healthy group have a reduction in degree in
the comatose group (i.e. posterior cingulate cortex, cerebellum), whereas the
healthy non-hub nodes have an increase of degree in patients (i.e. amygdala,
temporal cortex). The colors correspond to HDI values marked on the Y axis. B)
Hub disruption index projected onto a brain surface for an easier interpretation
of inter-regional differences.

Fig. 4. Global topology in controls and effective patients. A) Global efficiency (GE) in
connection density thresholds (5–50%, increment 5%). B) Clustering (average local ef
at multiple connection density thresholds (5–50%, increment 5%). There were no gr
connection density threshold.
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metric was primarily seen in the right lingual gyrus (visual network).

4. Discussion

Our findings significantly contribute to the growing evidence of the
involvement of resting state functional networks in the mechanisms of
acquired disorders of consciousness. We observed among comatose pa-
tients a large repertoire of topological disturbances, at several levels: (i)
whole brain impairments, encompassing gradual disruption in functional
connectivity with the most severe changes implying complete random-
ness (ii) and significant disruption of hubs rank order across local net-
works metrics, suggesting a critical reorganization of high degree nodes,
with cortical regions that were hubs of healthy brain networks becoming
non-hubs of comatose brain networks and vice versa.

In agreement with our first hypothesis, systems-level mathematical
metrics allows us to identify a massive breakdown of whole brain func-
tional connectivity in coma patients, leading in some cases to a complete
randomization of the functional brain networks. It should be stressed that
the obtained dichotomization between non-effective and effective whole
brain networks, seems to have a potential value for neuroprognostication
in this challenging clinical setting, as five out of six patients who did not
have any significant connections at any level of parcellation did not
recover consciousness after coma. Future and ongoing studies should
further investigate in larger and longitudinal patient's cohorts the added
value of this promising and straightforward assessment tool of global
brain function (Dell’Italia et al., 2018).

Further, the analysis did not show any evidence of significant dif-
ferences in global network topology between the effective coma patient
subgroup and healthy subjects (Achard et al., 2012; Crone et al., 2014).
Therefore, patients that had preserved whole-brain functional connec-
tivity, similar to that found in a healthy functioning brain, did not exhibit
any disruption in global efficiency and clustering. In fact, our findings are
in line with the recently published studies (De Vico Fallani et al., 2014;
van den Heuvel et al., 2017; V�a�sa et al., 2018) indicating that edges with
low functional connectivity strength are probably spurious and thus
artificially induce apparent changes in global topology not necessarily
related to an underlying neurobiological mechanism.

Indeed, the conservation of global networks properties has been put
in evidence in another graph theory-based study (Achard et al., 2012)
with patients with acquired disorders of consciousness, further
controls and patients in comparison to regular and random networks, at multiple
ficiency) in controls and patients in comparison to regular and random networks,
oup differences in global efficiency (p¼ .57) or clustering (p¼ .88) at the 10%



Fig. 5. Brain representation of nodes that demonstrated significant between-group difference in nodal degree and local efficiency. P> C – significantly higher in
patients; P< C –significantly lower in patients. The p values are corrected using the Bonferroni correction (p¼ .00018).
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suggesting that fundamental networks characteristics may be homeo-
statically preserved under clinical conditions such as severe brain-injury
and coma. It must be stressed, that these results were found across
multiple resolutions of brain parcellations and are probably unrelated to
the brain node definition, which has been shown to significantly impact
the analysis of brain network topology. Our results not only reproduce
the results obtained in the study of Achard et al. (2012), but highlight the
robustness of these findings under different acquisition scheme and in an
another group of patients from a different hospital. In this study, the
acquisition duration was nearly twice as shorter as the one used in
Achard et al. (2012), and the patients in the current cohort were more
severe and were scanned earlier than in the previous study (Achard et al.,
2012), exclusively during the acute phase that follows the primary brain
injury (i.e. coma). Without taking into account accurate statistical
properties of low functional connectivity, the results would have been
misleading because of the lack of signal in the data.

Further, a finer-grained exploration of network organization in coma
patients highlighted a disruption of the order of importance of specific
brain nodes, where brain regions such as the posterior cingulate cortex
and the cerebellum which were high-degree nodes in healthy brain
networks became low-degree nodes in coma patients, whereas low-
degree non-hub regions such as the amygdala and the temporal cortical
region became highly connected hub nodes in coma patients. This reor-
ganization was further put in evidence with other nodal properties such
as the hub rank disruption of nodal and local efficiency of brain regions.

In fact, previous functional connectivity studies with patients with
acquired disorders of consciousness, have suggested significant changes
along high-order midline posterior parietal regions, encompassing the
posterior cingulate cortex, in this setting (Hannawi et al., 2015; Mala-
gurski et al., 2017; Silva et al., 2015). In fact, these highly important
regions have been previously suggested to be involved in self-related
processing and potentially critical for consciousness emergence (Boly
et al., 2017).

Among these brain regions, we found robust evidence of a loss of
connectedness of the cerebellum, indicated by the hub disruption index
and supported by the local network topology results. We hypothesize that
6

this circuit-selective significant reduction of cerebellum centrality could
be linked to diaschisis phenomena caused by a reduced excitatory drive
from the damaged cortex, to which cerebellum is densely connected
(Herculano-Houzel, 2012) and could represent in the context of global
brain severe injury, a potential relevant biomarker of diffuse
cortico-cortical and cortico-thalamic widespread functional disruption.
From a cognitive point of view, this cerebellar disconnection seems in
line with recent studies which have highlighted the cognitive role of this
brain structure in consciousness related processes as attention, working
memory and self-reference tasks (Buckner, 2013; Sokolov et al., 2017).

Finally, the network reorganization index pointed to an increase in
nodal degree in coma patients in the least central nodes found in the
healthy controls, implying potential compensatory brain plastic pro-
cesses, reflected through reallocation of critical residual neural resources
to otherwise not so central nodes (Di Perri et al., 2014; Hillary et al.,
2015; Liu et al., 2017).

4.1. Methodological considerations and limitations

We thresholded each subject's graph at an FDR-adjusted significance
level of p< .05, and used the resulting connection densities to select a
fixed density threshold that contained only significant edges for all
subjects, including controls and coma patients. The final threshold was
set to 10% of significant connections, according to the minimal value
found in the sample of healthy subjects. This approach certainly has the
advantage of reducing the effect of potentially spurious connections by
highlighting patients with insufficient functional connectivity, however,
other significance levels should also be considered, to make sure that
these findings are not specific to a single threshold (V�a�sa et al., 2018).

Different brain parcellation methods should be taken into account
when defining regions of interest, as the choice of nodes has been shown
to significantly impact the topological organization (De Vico Fallani
et al., 2014). However, the “randomness”, that is the loss of functional
connectivity, found in some of our patients has been identified across
multiple levels of parcellation implying potential global-level changes
independent of the choice of brain nodes.
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Further, since the BOLD signal is hemodynamic in origin, it is worth
investigating if alterations in global functional connectivity found in our
patients might be, in some cases, a reflection of altered neurovascular
coupling and consequent signal loss, as previously highlighted in cere-
brovascular and ischemic disorders (Hillman, 2014).

Further research needs to include more patients with accurate long-
term longitudinal follow-up, encompassing repeated behavioral and
fMRI assessment because topological organization could significantly
change over the course of time (Castellanos et al., 2011; Nakamura et al.,
2009). Additionally, comatose patients with different etiologies, such as
traumatic brain injury, should be also studied aiming to identify potential
etiology-related pathology mechanisms.

5. Conclusions

In summary, the probabilistic p value–based thresholding which we
applied highlighted significant whole-brain reorganization in coma pa-
tients, with the most severe changes implying a global reduction in
functional connectivity and consequent randomness. The remaining pa-
tients had sufficient significant connections between regions, but showed
globally reorganized brain networks put in evidence by a disruption in
hub rank order across several local metrics. Apart from a deeper under-
standing of the neural correlates of consciousness, the obtained dichot-
omization between the non-effective and effective patient subgroups, has
potential clinical implications and might be particularly relevant for
outcome prediction and could inspire new therapeutic options.
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