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A B S T R A C T

Parkinson's Disease (PD) and Multiple System Atrophy (MSA) are two parkinsonian syndromes that share many
symptoms, albeit having very different prognosis. Although previous studies have proposed multimodal MRI
protocols combined with multivariate analysis to discriminate between these two populations and healthy
controls, studies combining all MRI indexes relevant for these disorders (i.e. grey matter volume, fractional
anisotropy, mean diffusivity, iron deposition, brain activity at rest and brain connectivity) with a completely
data-driven voxelwise analysis for discrimination are still lacking. In this study, we used such a complete MRI
protocol and adapted a fully-data driven analysis pipeline to discriminate between these populations and a
healthy controls (HC) group. The pipeline combined several feature selection and reduction steps to obtain
interpretable models with a low number of discriminant features that can shed light onto the brain pathology of
PD and MSA. Using this pipeline, we could discriminate between PD and HC (best accuracy = 0.78), MSA and
HC (best accuracy = 0.94) and PD and MSA (best accuracy = 0.88). Moreover, we showed that indexes derived
from resting-state fMRI alone could discriminate between PD and HC, while mean diffusivity in the cerebellum
and the putamen alone could discriminate between MSA and HC. On the other hand, a more diverse set of
indexes derived by multiple modalities was needed to discriminate between the two disorders. We showed that
our pipeline was able to discriminate between distinct pathological populations while delivering sparse model
that could be used to better understand the neural underpinning of the pathologies.

1. Introduction

Parkinson's Disease (PD) and Multiple System Atrophy (MSA) are
two neurodegenerative diseases characterized at the neuropathological
level by the accumulation of α-synuclein, either in neurons in PD or in
oligodendrocytes in MSA (Halliday et al., 2011). The clinical diagnosis
of MSA can be challenging as no specific symptom or biomarker allows
a “definite” diagnosis in vivo. Currently, the “definite” diagnosis of

MSA requires post-mortem confirmation, by means of a neuropatholo-
gical examination. It is often challenging in clinical practice to differ-
entiate MSA, especially its parkinsonian variant (MSA-p) as opposed to
the cerebellar variant (MSA-c), from PD as both entities can share si-
milar phenotypes, especially in early stages.

Brain modifications related to neurodegeneration due to aging as
well as psychiatric or neurodegenerative diseases can be characterized
using multimodal MRI protocols with sequences sensitive to different
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tissue characteristics (Barbagallo et al., 2016; Cherubini et al., 2016;
Eustache et al., 2016; Lee et al., 2018; Nemmi et al., 2015; Péran et al.,
2010, 2018; Spoletini et al., 2011). Previous multimodal MRI studies
have mainly used structural markers: grey and white matter volume
(calculated using T1-weighted imaging), microstructural integrity of
the white and grey matter by using diffusion weighted imaging (DWI)
related indexes (e.g. fractional anisotropy, FA, and mean diffusivity,
MD) and iron deposition by using R2* imaging. Several studies have
focused on characterizing the pathophysiological substrate of PD and
MSA from a multimodal perspective. Our group showed that PD pa-
tients displayed higher iron deposition (as measured by R2* imaging) in
the substantia nigra (SN), lower FA in the SN and thalamus, and higher
MD in the thalamus compared to healthy controls (HC) (Péran et al.,
2010). Moreover, a combination of indexes extracted from three clus-
ters by using voxel-wise analysis (i.e. R2* in a cluster in the SN, MD in
the putamen and FA in the SN) reached area under the curve in ROC
analysis as high as 95% (Péran et al., 2010). More recently, we ex-
tended these methods to MSA patients, showing that they show mi-
crostructural changes in the putamen and the cerebellum, regardless of
the subtype, relative to both HC and PD patients (Barbagallo et al.,
2016; Péran et al., 2018). To our knowledge, no previous studies
combined functional and structural MRI indexes to discriminate be-
tween PD and MSA patients.

Together with the development of multimodal MRI imaging, there
has been an increasing use of multivariate assessments and machine
learning for the analyses of MRI data (Haller et al., 2014). Multivariate
methods are intrinsically well suited for the analysis of brain imaging;
they use the global pattern of the data, rather than focusing on one
voxel at a time as in massive univariate analyses, thus leveraging the
information about the whole spatial pattern of brain modifications.
When multivariate methods are coupled with multimodal imaging, one
can make full use of the complementarity of the information acquired
through the different MRI sequences. Several studies have used multi-
variate methods to discriminate PD patients from healthy controls, both
using single modality (Adeli et al., 2016; Chen et al., 2015; Huppertz
et al., 2016; Zhang et al., 2014) and multimodal MRI imaging (Bowman
et al., 2016; Long et al., 2012), or different indexes extracted from the
same modalities (Focke et al., 2011; Peng et al., 2017). Only two of
these studies also included MSA patients (Focke et al., 2011; Huppertz
et al., 2016), without using multimodal protocol. Although these stu-
dies could successfully discriminate between PD and controls (and MSA
and controls) they have some limitations: some of them used non-in-
dependent features selection (Zhang et al., 2014), some used a-priori
parcellation of the brain (Adeli et al., 2016; Bowman et al., 2016;
Huppertz et al., 2016; Long et al., 2012; Peng et al., 2017), and some
used a leave-one-out cross-validation scheme (Chen et al., 2015; Focke
et al., 2011; Huppertz et al., 2016; Long et al., 2012; Zhang et al.,
2014), which is known for introducing an optimistic bias in the eva-
luation of the performance of the classifier (Varoquaux et al., 2017).
Most importantly, to our knowledge the most complete multimodal
protocol was used by DuBois Bowman et al. (2016), including T1, rs-
fMRI and DWI, but not another important biomarker for parkinsonian
syndromes, as R2*.

In the light of the limitation of the previous studies, we performed a
study with the following characteristics

• A complete multimodal MRI protocol including T1, DWI, rs-fMRI
and R2* sequences

• A completely data-driven (i.e. voxel-wise rather than ROI based)
pipeline

• A pipeline striking a good balance between performance (i.e. ac-
curacy) and interpretability of the model (i.e. final number of fea-
tures included in the model)

• A pipeline that could evaluate the relative importance of the dif-
ferent modalities

• The use of 10-folds cross-validation, less prone to optimistic bias

• A comparison of performance when discriminating between PD and
HC, MSA and HC, and PD and MSA, using the same sequences.

To this aim we adapted a pipeline recently developed by Meng et al.
(2017). As in the original pipeline, we used several feature reduction
steps and further reduced feature dimensionality by clustering spatially
close voxels before fitting the discriminative model. However, at var-
iance with Meng and colleagues, we used what we call a “totally data
driven” pipeline; we included a nested cross-validation step to select the
most relevant modalities for each classification problem. This has the
added benefit of identifying the minimum set of modalities needed to
achieve the best discrimination between groups. Moreover, we tested
several cluster extent thresholds in the clustering step.

2. Materials and methods

2.1. Patients

Twenty-nine MSA and 26 PD patients matched for age and sex were
prospectively recruited at the outpatient clinic of the Toulouse PD
Expert Center and the Toulouse site of the French Reference Center for
MSA. Inclusion criteria were: (1) diagnosis of PD or MSA according to
established international diagnostic criteria (Gilman et al., 2008;
Hughes et al. 1992); (2) Hoehn and Yahr score (Hoehn and Y(Zhang
et al. 2014)ahr 1967) < 4 on treatment; (3) negative history of neu-
rological or psychiatric diseases other than PD or MSA; (4) lack of
significant cognitive decline (Mini Mental State Examination score >
24); (5) no treatment with deep brain stimulation; and (6) no evidence

of movement artefacts, vascular brain lesions, brain tumor, and/or
marked cortical and/or subcortical atrophy on MRI scan (2 expert
radiologists examined all MRIs to exclude potential brain abnormalities
as apparent on conventional FLAIR, T2-weighted, and T1-weighted
images). At the time of MRI data acquisition, 22 MSA patients were
classified as “probable”, while 7 MSA patients were classified as “pos-
sible”. All “possible” MSA patients were subsequently reclassified as
“probable” while followed-up for another 2 years at the French Re-
ference Center for MSA. No PD patient had his/her diagnosis re-
classified after 2 years of subsequent follow-up. All patients receiving
antiparkinsonian treatments were tested on medication. A healthy
control group of 26 right-handed subjects closely matched to patients
for age, sex, and education was also included.

The study was conducted according to the Declaration of Helsinki
and approved by the Toulouse Ethics Committee. Written informed
consent was obtained from all participants.

2.2. Image acquisition

We used a multimodal MRI protocol including T1-weighted ima-
ging, T2 relaxometry, DWI and resting state fMRI (rs-fMRI) (details in
Supplemental data).

2.3. Images preprocessing

2.3.1. T1 images
T1 images were segmented in grey matter and white matter map

using CAT12 (http://www.neuro.uni-jena.de/cat/) (Gaser and Dahnke
2016). This toolbox is an improvement over the VBM8 toolbox. Briefly,
the tissue probability maps are only used in a first (affine) registration
step, the actual segmentation is performed using an adaptive MAP ap-
proach with local adaptation of local intensity changes in order to deal
with varying tissue contrast (Dahnke et al. 2012; Gaser and Dahnke
2016). The final normalization is performed using DARTEL (Ashburner,
2007). The grey and white matter tissue maps were not modulated, as it
has been shown that unmodulated maps are best suited to detect
atrophy (Radua et al., 2014). The grey matter volume images were
smoothed with a Gaussian kernel of 8 mm FWHM (results obtained
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using non-smoothed images are reported in the supplementary mate-
rials).

CAT12 provide an automatic QA value for each segmented image;
this normalized QA values take into account resolution, bias and noise
present in the images. This unique value is then transformed in a note
that ranges from A to E. Images with note lower than D are usually
discarded from the analysis. None of our subjects had a QA note lower
than D.

2.3.2. Resting state images
rs-fMRI data were analyzed using the conn toolbox (Whitfield-

Gabrieli and Nieto-Castanon, 2012). Briefly, all images were time-sli-
cing corrected, unwarped and realigned to the first volume, normalized
using the standard normalization algorithm in SPM12 (Friston et al.
2007) and smoothed with a Gaussian kernel of 8 mm FWHM (results
obtained using non-smoothed images are reported in the supplementary
materials). We also used the art toolbox (http://nitrc.org/projects/
artifact_detect/) to detect corrupted volumes, defined as volume
with > 2 mm movement in any direction or a root mean squared
change in bold signal from volume to volume > 9. Noise correction was
performed using CompCor (Behzadi et al., 2007), that regresses out
from the functional time-series the first two principal components of the
time-series extracted from white matter and CSF. Moreover, six move-
ment regressors calculated during realignment plus their time deriva-
tives and their quadratic values were regressed out from the BOLD time-
series. Volumes deemed corrupted were also regressed out. No subjects
showed a mean framewise displacement > 2 mm. Note that the CONN
preprocessing pipeline output QA measurement that can be accounted
for in statistical analyses and to compare groups. From these variables
we retained the mean movement and the mean global signal change for
each subject.

After preprocessing and denoising we calculated the fraction of
amplitude of low frequency fluctuations (fALFF). fALFF measure the
proportion of the power of each frequency at the low-frequency range
(0.01–0.08 Hz) to that of the entire frequency range (0–0.25 Hz), thus
providing a normalized quantity that it is thought to reflect local ac-
tivity at rest (Zou et al., 2008). fALFF maps were smoothed with a
Gaussian Kernel of 8 mm FWHM.

We also calculated two other indexes of voxel-wise connectivity:
local correlation and global correlation. Local correlation is a measure
of local coherence and measure the average correlation among each
voxel and its neighbors. Local coherence has been shown to be reduced
in PD patients (Borroni et al., 2015). On the other hand, global corre-
lation is an index of a voxel network centrality; it measures the average
correlation between each voxel and all the other voxels in the brain. It
has been shown that the network centrality of several regions is mod-
ified in PD patients relative to controls (Gu et al., 2017; Wang et al.,
2018).

All fMRI-derived indexes were calculated using the conn toolbox
with the default parameters.

2.3.3. Diffusion weighted images
DWI were processed using fsl 5.0 (Jenkinson et al., 2012). In par-

ticular, DWI images were corrected for eddy current and realigned
using eddy_correct, then a standard tensor model was fit to each image
in order to calculate FA and MD (Behrens et al., 2003). FA images were
non-linearly normalized onto the standard FA template provided with
FSL using FLIRT (Jenkinson and Smith 2001) for the affine registration
and FNIRT for the nonlinear registration (Anderson et al. 2010). FA and
MD images were smoothed using a Gaussian kernel 8 mm FWHM (re-
sults obtained using non-smoothed images are reported in the supple-
mentary materials). Both FA and MD have been shown to discriminate
between PD and MSA patients, and to discriminate PD and MSA from
healthy controls (Péran et al., 2010, 2018). While other DWI-derived
indexes may have been calculated (e.g. radial or perpendicular diffu-
sivity), we limited our choice to FA and MD because they differentiate

the assessed groups and because they are the most used indexes in the
literature.

2.3.4. R2* images
The six T2*-weighted volumes were averaged to generate a mean

T2*-weighted volume. A full affine 3D alignment was calculated be-
tween each of the six T2*-weighted volumes and the mean T2*-
weighted volume. For each subject, a voxel-by-voxel nonlinear least-
squares fitting of the data was acquired at the six TEs to obtain a mono-
exponential signal decay curve (S = S0e − t/T2*). This method com-
bining data acquisition and data processing of T2* images demon-
strated good reproducibility (Péran et al., 2007). To facilitate the ana-
lysis of the relaxation results, we considered the inverse of the
relaxation times (i.e., relaxation rates R2* = 1/T2*) as previously de-
scribed (Cherubini et al., 2009; Péran et al., 2007, 2009). The mean
T2*-weighted volume was registered to the T1-weighted volume using a
full affine alignment, T1-weighted volume was than non-linearly re-
gistered into the MNI space and the calculated deformation field ap-
plied to the R2* images. The normalized R2* images were smoothed
with a Gaussian kernel of 8 mm FWHM (results obtained using non-
smoothed images are reported in the supplementary materials).

2.4. Machine learning pipeline

The machine learning pipeline consisted of several feature selection
and reduction steps detailed below.

2.4.1. Matrix reshaping and range normalization
Separately for each modality, images were reshaped from 3D matrix

to 2D matrix with subject x voxel dimensions after being masked for the
relevant mask (i.e. a liberal grey matter mask for grey matter and all rs-
fMRI related indexes, white matter for FA and whole brain mask for MD
and R2* maps). We chose to convert the images from 3D to 2D matrix
for easiness of processing. These matrices were then normalized so that
the values were comprised between 0 and 1. Note that the masking was
performed to speed the computation, only limiting each modality to the
brain regions meaningful for each modality (e.g. global connectivity of
white matter would not be meaningful).

2.4.2. Variance thresholding
Similarly to (Meng et al., 2017) we reasoned that features with only

minor variation among subjects would not be useful to separate the
groups. For this reason, we adopted a simple variance feature reduction
step in which, for each modality, we eliminated the 25% of features
with the lowest variance. This step can be considered conceptually si-
milar to the one described by (Wilhelm-Benartzi et al., 2013) and a
more liberal version adapted to classification problem of the one pro-
posed in (Meng et al., 2017).

2.4.3. Relieff based features selection
Relieff (Kira and Rendell, 1992; Kononenko et al., 1997) is a feature

selection algorithm that is widely used in the machine learning litera-
ture. It estimates a weight for each feature by comparing, for each case,
the distance of the closest intra and inter-class cases in that feature
space and increasing the weight if the distance is greater for the inter-
class than for the intra-class case. For each modality, we submitted the
features surviving the variance threshold to the Relieff algorithm (as
implemented in the CORElearn package for R (Robnik-Sikonja and
Savicky 2017)). In order to select the most relevant features we used a
screen test approach (Mori et al., 2000) as implemented in (Meng et al.,
2017). We calculated the selection threshold as the first minimum of
the second derivative of the sorted (in decreasing order) and smoothed
(via a loess regression (Cleveland et al. 1992)) Relieff weights. This is
equivalent to find the point at which the speed of the function ap-
proaches zero (i.e. the Relieff weight values drop dramatically). Only
features with a weight exceeding the threshold were retained.
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2.4.4. Spatial clustering of the features
Features from brain imaging are intrinsically non-independent; this

is partially due to the smoothing applied to the images, but it is above
all related to the fact that voxels that lie close usually belong to the
same anatomical/functional region. In the light of this knowledge
spatially cluster features (i.e. voxels) that are close to each other is an
effective and meaningful way of reducing the number of features. For
each modality, we submitted the features surviving the Relieff
threshold to a recursive spatial clustering algorithm: at first adjacent
voxels (i.e. < 3 mm apart) were assigned the same cluster, all clusters
smaller than a certain extent k (and isolated voxels) were then sub-
mitted to a second clustering step with a radius of 9 mm, again those
clusters smaller than k and isolated voxels were submitted to a third and
last clustering with a radius of 12 mm. After the third step all clusters
smaller than k and isolated voxels were discarded (this step was per-
formed using the spatstat package in R (Baddeley et al. 2015)). The
rationale for this step was that voxels with supra-threshold Relieff weight
but “isolated” could add noise in the model (i.e. due to the spatial de-
pendency of voxels in the brain, isolated voxels have higher chance of
not being physiologically relevant). Moreover, too many such voxels
would increase the space of possible features subsets to evaluate (see
below). We tried several k (i.e. 30, 50, 100, 200) in order to observe the
effect that this parameter could have on the discrimination perfor-
mance. Finally, we extract the average signal for each cluster, thus ef-
fectively reducing the number of features for each modality from
hundreds to tens.

2.4.5. Merging of modalities and subset/modalities selection
In order to have a completely data-driven pipeline, one should

empirically test the number and type of modalities that enter the dis-
criminant model. Moreover, even after Relieff selection and spatial
clustering, some clusters may be not very informative, and some clus-
ters may convey redundant information (e.g. spatially overlapping low
FA and high MD may actually capture similar characteristics of the
white matter). For these reasons, we combined a cross-validated
scheme to select the number and type of modalities to use for

discrimination with subset selection based on correlation. The latter
technique is aimed to found the subset of features (i.e. clusters in the
case at hand) that maximize the predictive power relative to the out-
come while minimizing redundancy among clusters (measured as col-
linearity) (Kohavi and John, 1997; Tripoliti et al., 2010). Using an inner
10-fold cross-validation scheme we tested all the possible combinations
of modalities: for each combination we merged the modalities in one
matrix (having dimensions [subjects] x [N of clusters from all modalities in
the combination at hand]) and performed subset selection using the se-
lect.cfs function (Wang et al., 2005) of the Biocomb package
(Novoselova et al. 2017). We chose a 10-folds cross validation to be
consistent with the outer cross-validation loop. In the end, we obtained
a cross-validated performance score for each combination (i.e. balanced
accuracy). We selected the subset of cluster/modalities that maximized
the performance score and used this subset to fit the discriminant
model.

2.4.6. Fitting of the model
Finally, the model is fitted using the sequential minimal optimiza-

tion (SMO) algorithm(Platt 1998; Schölkopf and Smola 2002) with
polynomial kernel. The model was fitted using the RWeka package
(Hornik et al., 2009), a wrapper of the java-based software Weka
(Witten et al., 2011). The free parameters of the SMO algorithm are the
order of the polynomial and the lambda (i.e. allowed error); we left
these parameters to the default value of respectively 5 and 10.

2.4.7. Cross validation scheme
We adopted a 10-fold full cross-validation scheme. This means that

each step in the machine learning pipeline (except for the images re-
shaping and range normalization) was performed within the cross-va-
lidation framework. At each iteration, we divided our sample in ten
folds and used 9 of them as training set and 1 as testing set. The feature
selection and reduction steps were carried out using the training
sample, then we used the clusters found in the training sample as fea-
tures in the test sample and evaluated the model using only the test
sample. This procedure was repeated 10 times and then the predicted

Fig. 1. Predictive pipeline. Colored brains represent
the different indexes used for prediction, brains of
the same color represent indexes from the same MRI
modality. The outer malva square represents the
outer 10-folds CV scheme while the inner orange
square represents the inner 10-folds CV set up to find
the best combination of modalities. Green squares
represent features selection and reduction steps
while grey squares represent preprocessing, model
fitting and prediction steps, grey ovals represent the
intermediate and final outcome of the pipeline.
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values for each fold were stacked in order to have a prediction for every
and each subject in the sample. We then calculated accuracy, sensitivity
and specificity for the stacked prediction (merged scores). Fig. 1 sche-
matically represents the predictive pipeline. The code for the pipeline is
released on github.

2.4.8. Model repetitions
Each discrimination (i.e. PD vs HC, MSA vs HC, PD vs MSA) and

cluster extent (i.e. 30, 50, 100, 200) was repeated 10 times to have a better
estimate of the performance of the model and a measure of its stability.

2.4.9. Modalities included
Considering the 10 repetitions of each 10-fold CV pipeline, we had a

total of 100 folds for each discrimination and cluster extent. To gain
insight about the relative importance of the different modalities we

report the rate of occurrence of each modality in the 100 folds.

2.5. Statistical analysis

Sex distribution in the 3 groups was compared using a Fisher exact
test. Age was normally distributed and was compared among groups
using a one-way analysis of variance. The QA variables from structural,
rs-fMRI and DWI acquisition were non-normally distributed and were
compared among groups by means of a Kruskal-Wallis test.

Following (Combrisson and Jerbi, 2015) we used binomial cumu-
lative distribution testing in order to assess the statistical significance of
the classification pipelines. Briefly, classical binomial testing relies on
the assumption that the theoretical chance level in a classification task
is

c
1 where c is the number of classis. However, this is only true when the

number of observations is (or approach to) infinite. Whenever we are
dealing with a sample of finite amount, the chance level depends on the
sample size. One way of taking this into account is to assume that the
classification error follows a binomial cumulative distribution and
calculate the number of correctly classified observations that allows to
say that the classification accuracy depart from chance with an α level
of certitude. This can indeed be achieved using the binomial cumulative
distribution function as follow Observation Correctly Classified(α) = bi-
nomial CDF (1 − α,n,chance level), where α is the desired statistical
threshold, n is the sample size and chance level is the probability to
correctly classify an observation at random. We used the qbinom func-
tion in R to calculate the binomial cumulative distribution function,
testing several statistical thresholds. For two of the comparisons (i.e.
MSA vs HC and MSA vs PD) we had an unbalanced sample, so instead of
a chance level of 0.5 we used a chance level of most represented class

n
(i.e.

0.527). The reason to choose this chance level is that with unbalanced
classes, the best expected random model is a model that simply classify
all observations as member of the most represented class. On the other

hand, for the comparison between PD and HC, we choose a chance level
equal to 0.5. Combrisson and colleagues have shown that the binomial
cumulative distribution function method yield similar results as per-
mutations method, even if this latter is slightly more conservative for
small sample.

Since we have 10 repetitions for each discrimination and cluster
extent, we report the mean accuracy together with its [95% confidence
interval], as well as the range of p values and the median p values for
each combination of discrimination and cluster extent.

3. Results

3.1. Demographic and clinical variables

3.2. PD patients versus control

When training the model to discriminate between PD patients and
HC we obtained the following results; for a cluster extent threshold
(k) = 30 we obtained a mean accuracy of 0.76 [0.74–0.80] (range
p = .00001–0.001, median p = .00005). For k = 50 a median accu-
racy of 0.78 [0.74–0.82] (range p = .00001–0.01, median
p = .00001). For k = 100 we obtained an accuracy of 0.74
[0.71–0.76] (range p = .0001–0.01, median p = .0005). For k = 200
we obtained an accuracy of 0.65 [0.61–0.68] (range p = .001–0.2,
median p = .01). Fig. 1 compares the performance of this dis-
crimination in terms of accuracy, specificity and sensitivity to the
other discriminations. Fig. 2 reports the frequency of occurrence of
the different modalities (and combinations of modalities) for 100
folds.

For the anatomical localization of the clusters, Fig. 3 shows the
results from the cluster extent pipeline with the highest accuracy (i.e.
k = 50). The intensity of the images reflects the proportion of folds in
which a certain voxel was selected (out of 100). The most frequently
observed voxels for fALFF were in the left anterior parahippocampal
gyrus/ temporal fusiform cortex (a contralateral cluster was ob-
served less frequently) also covering part of the head of the hippo-
campus and the amygdala; a small cluster was observed in in the left
VIIb lobule of the cerebellum. For the global correlation we found
two clusters of frequently selected voxels in the right and left pre-
central/postcentral gyrus. A consistent cluster was found also span-
ning the cingulate gyrus and the precuneus. For the local correlation,
a cluster of frequently observed voxels was observed in the left
precentral gyrus, anterior to the cluster observed for the global
correlation. A cluster with a similar frequency of observation was
found in the left orbitofrontal cortex, extending into the subcallosal
cortex.

Table 1
Demographic and clinical variables. The table reports frequency or mean ± sd of the relevant demographic and clinical variables. Comparisons between PD and
MSA as a whole were performed using a Mann-Whitney U test while the comparisons among PD, MSA-p and MSA-c were performed using a Kruskal-Wallis one-way
analysis of variance. The post-hoc comparisons for the variables leading to significant main effect of group among PD, MSA-cc and MSA-p are reported in
Supplementary table 1.

n Sex, M/F Age Age at onset Disease duration MMSE LEDD, mg/die H&Y UPDRS-III UMSARS II-

Groups
PD 26 12/14 63.8 ± 6.3 56 ± 6.8 7.4 ± 4.5 29.1 ± 1.4 689 ± 367.2 2.3 ± 0.5 19.1 ± 10
MSA-tot 29 13/16 64 ± 7.5 58.3 ± 8.2 5.7 ± 2.3 27.9 ± 1.7 470 ± 500.5 2.4 ± 0.5 29.8 ± 8
MSA-p 16 7/9 66.1 ± 7.8 60.7 ± 7.9 5.4 ± 2.2 28.1 ± 1.5 700.1 ± 386.4 2.5 ± 0.5 31.1 ± 8.7
MSA-c 13 6/7 61.5 ± 6.5 55.2 ± 7.7 6.1 ± 2.5 27.7 ± 2 187.8 ± 490.8 2.2 ± 0.4 28.2 ± 7

Statistics
PD vs MSA-tot 0.92 0.899 0.227 0.317 <0.01 0.028 0.581 NA NA
PD vs MSA-p vs MSA-c 0.99 0.277 0.147 0.527 <0.01 <0.01 0.278 NA NA

Bold signifies p < .05.
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3.3. MSA patients versus control

When training the model to discriminate between MSA patients and
HC we obtained the following results; for a cluster extent threshold
(k) = 30 we obtained a mean accuracy of 0.92 [0.89–0.94] (range
p = .00001–0.00001, median p = .00001). For k = 50 a median accu-
racy of 0.94 [0.91–0.96] (range p = .00001–0.00001, median
p = .00001). For k = 100 we obtained an accuracy of 0.93 [0.90–0.95]
(range p = .00001–0.00001, median p = .00001). For k = 200 we ob-
tained an accuracy of 0.89 [0.86–0.92] (range p = .00001–0.00001,
median p = .00001). Fig. 4 report the frequency of occurrence of the
different modalities (and combinations of modalities) for 100 folds.

For the spatial localization of the clusters, Fig. 5 shows the results
from the cluster extent pipeline with the highest accuracy (i.e. k = 50).

MD most observed voxels were in a cluster covering almost the
entire cerebellum as well as part of the brainstem and the medial in-
ferior occipital lobe. Of notice, in all the folds we observed MD voxels in
the right putamen (and in a quarter of folds we observed a contralateral
cluster in the left putamen). As for r2s, in half the folds we observed a
cluster in the deep nuclei of the brainstem.

3.4. PD vs MSA patients

When training the model to discriminate between MSA patients and
PD we obtained the following results; for a cluster extent (k) = 30 we
obtained a mean accuracy of 0.83 [0.80–0.86] (range
p = .00001–0.0001, median p = .00001). For k = 50 a median accu-
racy of 0.84 [0.81–0.86] (range p = .00001–0.0001, median
p = .00001). For k = 100 we obtained an accuracy of 0.87 [0.84–0.90]
(range p = .00001–0.00001, median p = .00001). For k = 200 we ob-
tained an accuracy of 0.88 [0.85–0.90] (range p = .00001–0.00001,
median p = .00001). Fig. 6 report the frequency of occurrence of the
different modalities (and combinations of modalities) for 100 folds.

For the spatial localization of the clusters, in Fig. 7 shows the results
from the cluster extent pipeline with the highest accuracy (i.e.
k = 200).

Discriminative grey matter volume voxels were consistently ob-
served in the cerebellum, in particular in the vermis (expanding into the
adjacent brainstem) and in the right and left crus II. Other consistent
clusters were observed at the interface of the lingual gyrus and the VI
lobule of the cerebellum bilaterally. Finally, bilateral clusters were
observed in the whole putamen, extending into the adjacent insular

Fig. 2. Comparison of the performance of the different discrimination tasks and cluster extent.

Fig. 3. Frequency of occurrence of the modalities and their combination in 100 folds (10 folds CV repeated 10 times) for the discrimination between PD and HC.
globalCorr = global correlation; localCorr = local correlation; alff = fraction of alpha low frequency fluctuations, fa = fractional anisotropy, gm = grey matter
volume, md = mean diffusivity.
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cortex. For FA, a consistent discriminant cluster was observed covering
almost the entirety of the cerebellum and the adjacent brainstem. This
cluster closely resembled the one found for MD both when comparing
PD and MSA patients (see below), and when comparing MSA patients
and HC (see above). Global correlation was also consistently selected
(56 out of 100 folds), however, its spatial distribution appeared less
consistent, a small cluster observed in 30 folds comprised several sub

regions of the right cerebellum (crus I, lobule V and VI). Finally, MD
was observed almost as frequently as global correlation, but the spatial
distribution of the discriminant clusters was much more consistent; in
almost all the folds for which MD was selected, the relevant clusters
covered the cerebellum and the brainstem, similarly to FA. For the sake
of clarity, Fig. 8 summarizes the main findings.

Fig. 4. Most frequently selected voxels for the most frequently selected modalities (PD vs HC). A) fALFF; B) global correlation; C) local correlation.

Fig. 5. Frequency of occurrence of the modalities and their combination in 100 folds (10 folds CV repeated 10 times) for the discrimination between MSA and HC.
globalCorr = global correlation; localCorr = local correlation; alff = fraction of alpha low frequency fluctuations, fa = fractional anisotropy, gm = grey matter
volume, md = mean diffusivity, r2s = R2*.
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3.5. Non smoothed images and comparison between MSA-c vs MSA-p

We report the results of the discriminant analyses performed using
non-smoothed data and the discriminant analysis between MSA-c and
MSA-p in the supplementary materials.

4. Discussion

Using a data-driven whole brain discriminant approach based on
both structural and functional MRI we could discriminate between PD
and HC, MSA and HC, and PD and MSA. We showed that the most
discriminative modalities were different according to the discriminant
task at hand. In discriminating between PD and HC, resting state-re-
lated indexes were the only features consistently selected, MD in iso-
lation (with some contribution by R2*) can discriminate with high
accuracy between MSA and HC, and a combination of structural and
functional indexes is needed to discriminate between PD and MSA.
These results confirmed the complementarity and usefulness of using
different MRI modalities and parameters to discriminate parkinsonian
syndromes.

Relative to our previous studies, we have introduced several im-
portant novelties. First of all, for the first time we added rs-fMRI mar-
kers to structural ones to discriminate parkinsonian syndromes.
Moreover, for the first time we combined a fully data-driven pipeline
with a whole-brain approach. Perhaps more importantly, relative to our
previous work (Barbagallo et al., 2016; Nemmi et al., 2015; Péran et al.,
2010, 2018), for the first time we used cross-validation methods and
independent feature selection steps that ensure generalizability. An-
other important aspect of this work is the competition between markers
to discriminate patients determining the most effective markers. Studies
that combine voxel-wise multimodal approaches with methods apt to
select the most relevant modalities are uncommon in the literature
(Fig. 9).

4.1. PD vs HC

We obtained the best accuracy in discriminating between PD and
HC when using a cluster extent of 50 voxels (0.78 [0.74–0.82]). This
accuracy is higher than that reported in some previous studies (Focke
et al., 2011; Huppertz et al., 2016), in line with the study of Adeli et al.

Fig. 6. Most frequently selected voxels for the most frequently selected modalities (MSA vs HC). A) MD; B) r2s.

Fig. 7. Frequency of occurrence of the modalities and their combination in 100 folds (10 folds CV repeated 10 times) for the discrimination between PD and MSA.
globalCorr = global correlation; localCorr = local correlation; alff = fraction of alpha low frequency fluctuations, fa = fractional anisotropy, gm = grey matter
volume, md = mean diffusivity, r2s = R2*.
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(2016) and slightly lower than others (Chen et al., 2015; Long et al.,
2012; Peng et al., 2017; Zhang et al., 2014). However, the comparison
can be unfair, as all the studies reaching higher accuracy used LOO
cross-validation, which is a biased estimator of the performance
(Varoquaux et al., 2017). Moreover, Zhang et al. (2014) used non-in-
dependent feature selection (i.e. they performed the feature selection
on the whole sample rather than within the cross-validation procedure).

As for the most discriminative modalities, only the rs-fMRI-related
indexes were consistently chosen in the pipeline. This is in line with the
study of Bowman and colleagues, that reported that the models with the
best performance were those fitted using functional connectivity fea-
tures (Bowman et al., 2016). This result suggest that even for non-de-
novo PD patients, structural abnormalities can be very subtle and hard
to detect, as confirmed by the contrasting results obtained using both
VBM (Brenneis et al., 2003; Pan et al., 2013; Summerfield et al., 2005;
Tessitore et al., 2012) and volumetry (Kosta et al., 2006; S. H. Lee et al.,

2011; Messina et al., 2011; Péran et al., 2010; Pitcher et al., 2012). On
the other hand, abnormalities in brain activity and connectivity may be
detected before structural ones, and thus fMRI-related indexes are
better suited to discriminate PD and HC. As for the spatial localization
of the discriminative cluster, results for fALFF are partially in line with
a recent metanalysis; indeed, Pan and colleagues (2017) found a reli-
able cluster of fALFF differences between PD and HC that was located in
the parahippocampal gyrus/inferior temporal gyrus/hippocampus. The
cluster found by Pan and colleagues was on the right, while the most
consistent cluster we found was in the contralateral region. However,
we also observed a less frequently selected cluster on the right. The fact
that we did not observe any of the other clusters observed by Pan and
colleagues can be related to the fact that our pipeline only selected the
most discriminative clusters, eliminating redundant features (i.e. the
other clusters found in Pan study (2017) discriminated between the two
groups but were not necessary for discrimination). Although global

Fig. 8. Most frequently selected voxels for the most frequently selected modalities (PD vs MSA). A) gm; B) FA; C) global correlation; D) MD.
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correlation has not been widely used in the PD literature, it can be
considered as conceptually similar to the graph-theory derived measure
of degree connectivity; indeed, it has been shown that PD patients show
higher average degree connectivity within the motor network (Göttlich
et al., 2013), a result in line with our finding, as the discriminative
clusters most frequently selected for global correlation were mainly
located in the primary sensorimotor cortex. Finally, index of local
connectivity as regional homogeneity (ReHo) and local efficiency have
been repeatedly shown to be abnormal in PD patients (Choe et al.,
2013; Kamagata et al., 2018; Li et al., 2016). Choe et al. (2013) found
ReHo abnormalities in PD patients in motor and parietal regions close
to the clusters we observed using local correlation.

The results of the discrimination between PD and HC are strikingly
different from previous results obtained with a structural multimodal
protocol. In a previous study, our group found that MD, FA and R2* in
the subcortical structures (specifically, putamen and SN) were enough
to discriminate between PD and HC with accuracy around 95% (Péran
et al., 2010). However, several methodological differences can account
for this difference: first, Peran et al. (2010) did not include any resting
state imaging in their protocol, so that a direct comparison of the re-
levance of rs-fMRI relative to structural and microstructural MRI

related indexes was not possible in their study. Moreover, the study by
Peran and colleagues used a region of interest approach hypothesis
driven, as even their voxel-wise analyses were limited by a mask only
comprising the subcortical nuclei and the brain-stem. Moreover, they
did not downsample nor smooth their images, allowing for difference in
more spatially defined region to be observed, relative to our approach,
which used downsampling and smoothing as a mean of feature reduc-
tion. The downsampling coupled with the smoothing (and the extent
threshold we imposed on the clusters) can lead the pipeline not to pick
up indexes in small and well-defined anatomical regions (e.g. SN) that
are indeed markers of the pathology. Images in native resolution could
be used and/or the cluster extent threshold could be avoided, however,
this would probably lead to a lack of generalization from the training to
the test set (i.e. spurious small cluster that are found to discriminate
between the group in the training set but not in the testing set).
Moreover, the subset selection step tests all the possible combinations of
clusters, this means that the computational time increases exponentially
with the increasing number of clusters. A more effective way of in-
cluding imaging markers from regions that are well known to be useful
in discriminating between the groups would be to include them directly
before fitting the model or give them a fair chance of being selected by

Fig. 9. reports the performance of the best model together with its cluster extent for each discrimination task (upper panel). In the middle panel are reported the
modalities most frequently selected for each discrimination task (the brain slices are from a representative subject and intensity coded). In the lower panel are
reported the cluster most frequently observed (> 50 folds, excepts for R2* > 40 folds) for each of the most observed modalities. Spatial cluster for global correlation
for the discrimination between PD and MSA are not shown as no voxel was observed in > 25 folds.
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including them just before the subset selection step.
Finally, the feature selection approach used by Peran and colleagues

(2010) was not independent: feature selection was performed using the
whole set. On the other hand, the feature selection steps in our pipeline
were performed within the cross-validation loop, thus ensuring in-
dependence and hence generalizability, to a certain extent.

4.2. MSA and HC

The most striking finding for the discrimination between MSA and
HC was that MD almost in isolation was able to discriminate between
the two groups with a high accuracy (0.94). This accuracy is higher
than those obtained by Focke et al. (2011) using either grey or white
matter volume and those in discriminating MSA-p from PD and MSA-c
from PD in (Huppertz et al., 2016).

The most observed clusters for MD fell in the cerebellum and the
putamen, whose atrophy and microstructural abnormalities are among
the core features of MSA neuropathology (Barbagallo et al., 2016; Berg
et al., 2011; Péran et al., 2018; Seppi et al., 2006a, 2006b; Shin et al.,
2007). Interestingly, diffusion related indexes in the cerebellum and the
putamen have been shown to differ between MSA and HC and between
MSA and PD (Nicoletti et al. 2006; Seppi et al., 2006a, 2006b).

The second most selected modality was R2*, an index related to iron
accumulation in the brain (Ordidge et al. 1994; Péran et al., 2007,
2009). The discriminant cluster for this modality was found in the
brainstem. The involvement of the brainstem in MSA pathology is well-
known (Benarroch 2003, 2007; Baddeley et al., 2015) and micro-
structural abnormalities have been observed in the brainstem of MSA-c
patients using apparent diffusion coefficient (ADC) (Kanazawa et al.,
2004). However, to our knowledge, this is the first time that iron ac-
cumulation has been found in the brainstem of MSA patients, at least
relative to HC. Cluster of increased iron deposition in the brainstem
have already been found for MSA patients relative to PD (Péran et al.,
2018).

It is important to highlight that the fact that we did not found dis-
criminant clusters for other modalities (e.g. GM or FA) does not mean
that MSA and HC do not differ in these modalities. It is possible that
univariate voxel-wise analyses would have found significant differences
between the two groups, but MD abnormalities in the cerebellum and
the putamen can be considered the signature of MSA in this sample.

4.3. PD and MSA

Not surprisingly, the accuracy for the discriminant model between
PD and MSA (0.88) was lower than the accuracy for MSA vs HC but
higher than the accuracy for PD vs HC. This accuracy is higher than
those obtained by Focke et al. (2011) when discriminating between PD
and MSA-p, and in line with the accuracy obtained by Huppertz et al.
(2016) (0.90 and 0.94 for MSA-p and MSA-c respectively). However,
one should bear in mind that the accuracy in Huppertz et al. (2016) was
calculated using LOO cross-validation, which can introduce an opti-
mistic bias in the performance (Varoquaux et al., 2017).

The comparison between MSA and PD led to the richest model, with
4 modalities that were selected in more than half the folds. Three of
these four modalities covered almost the entire cerebellum. This result
is not surprising, given the extensive differences in this region found by
Peran and colleagues (2018) in the same sample for GM, MD and FA.
Similarly, the fact that GM clusters were also found in the bilateral
putamen is well in line with the known neuropathology of MSA (Berg
et al., 2011; Seppi et al., 2006a, 2006b; Shin et al., 2007). What is
interesting about this result is that, at variance with the discrimination
between MSA and HC, three separate indexes of microstructural in-
tegrity in the cerebellum were selected. This suggests that the differ-
ences in cerebellar microstructural integrity between MSA and PD are
subtler than those between MSA and HC and thus a more complete
“description” of the abnormality is needed in order to discriminate

between the two groups.
As for global correlation, this modality has been choses quite often,

but not in a stable spatial location. Indeed, the most frequently ob-
served cluster, extending between cerebellum and occipital cortex, has
only been observed in 38 out of 100 folds. One of the reasons for this
lack of spatial consistency can be a lack of generalization for this
modality between the training and the testing set: a cluster of global
correlation could be discriminant within the training set but this dis-
criminative power would not generalize to the testing set. Anyhow, this
lack of spatial consistency suggests skepticism about the utility of global
correlation in discriminating between the two groups.

4.4. General discussion

When comparing the results of the three different discrimination
tasks there is a striking difference between the modalities selected to
discriminate PD patients from HC, and those selected to discriminate
MSA from PD and HC. Our results suggest that a single resting state
fMRI acquisition, from which several parameters can be extracted,
could be enough to successfully discriminate PD from HC. Combined
with a T1 acquisition, necessary for the processing of the resting state
data, this would mean an MRI sequence no longer than 15 min, much
more feasible for any patient than a longer complete multimodal se-
quence. Of course, features studied should focus on rs-fMRI alone,
trying to improve the overall performance of the model. There are
several ways of doing so; one could avoid the resampling of the data to
3 mm isotropic voxels, thus gaining spatial specificity, derive more
specific indexes related to the whole connectome (i.e. graph theory-
related indexes), chose to use a-priori knowledge of PD pathology and
only focus on selected resting state networks or functional connectivity
of selected seed regions. On the other hand, when discriminating MSA
patients from the other two groups, structural modality both related to
macro (i.e. GM) and micro structure (i.e. MD) have been chosen. This is
not to say that fMRI related indexes do not discriminate between MSA
and the other groups, rather than structural pathology is more dis-
criminant and the real hallmark of MSA pathology. Thus, our results
suggest that to discriminate between MSA and other pathologies, an
MRI protocol comprising a T1 and a DWI acquisition can be the best
choice if one needs to strike a balance between accuracy and patients'
comfort.

When focusing on the modalities chosen for each discriminant task
it is important to consider the systematic effect that local atrophy might
exert on diffusion, R2* and functional-derived indexes during spatial
normalization. Although we have not corrected for this (possible) effect
the correlation-based feature selection step accounted for it.
Specifically, since the CFS step select the cluster subset that minimizes
redundancy, if a non T1-related cluster is chosen together with or in-
stead of a T1-related one, this means that the former brings in-
dependent information over and beyond the latter, and that this is over
and beyond the atrophy effect. Note also that focusing on the dis-
criminant clusters between PD and MSA, it is remarkable that even if
there is a fair degree of overlap, each modality contributes with some
degree of spatial specificity (supplementary fig. 10). It is also note-
worthy that this approach (i.e. avoid correction for atrophy-related
effect) was the one chosen in the original paper by Meng and colleagues
(Meng et al., 2017) and the one used in a previous paper comparing PD,
MSA-c and MSA-p (Péran et al., 2018).

Another interesting result is the influence the cluster extent
threshold had on the different discrimination task: as Fig. 1 illustrates,
while the discrimination between PD and HC as well as between MSA
and HC benefitted more from small cluster extent (best accuracies for
30 and 50 voxels), the performance was higher for higher cluster extent
threshold when discriminating between PD and MSA (best accuracies at
100 and 200 voxels). A tentative interpretation could be related to an
information loss/generalizability trade off: when comparing patients
(PD or MSA) with healthy controls, smaller cluster extents allow for a
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finer grained pattern of differences between the two groups, with these
differences being mostly true positive, as one could expect real differ-
ences between patients and controls. On the other hand, when com-
paring two patient populations, larger cluster extent thresholds would
lead to a loss of finer grained information but would ensure that only
real (and thus generalizable) differences are retained, as smaller clus-
ters may be due to noise. In any case, our results suggest that cluster
extent is an important hyper parameter in our (and possibly others')
pipeline and different cluster extent should be tested. Another approach
could be to choose the cluster extent threshold in a nested cross-vali-
dation loop.

One advantage of our pipeline is that it can be easily extended by
including different modalities: one example could be SPECT imaging
(DATscan) or PET imaging acquired using marker of neuroinflamma-
tion (like 18 F-DPA-714, a TSPO radioligand (Arlicot et al., 2012)),
which have been shown to be an important component of PD (Hirsch
and Hunot, 2009) as well as MSA (Vieira et al., 2015). Moreover, we are
planning to expand our pipeline to non-imaging modalities, as for ex-
ample biological fluids (e.g. blood and cerebrospinal fluid) or cognitive
testing. Of course, the clustering step of the pipeline should be adapted
for non-imaging features, as spatial clustering would not be perform-
able. However, there are several dimensionality reduction algorithms
that could be used to this aim (e.g. PCA, multidimensional scaling).

The main limitation of our study is the small sample size; indeed,
Varoquaux et al. (2017) cautioned about machine learning studies with
small samples, drawing attention on the usual big confidence intervals
for indexes of performance, especially when using LOO cross validation.
We tried to partially avoid this problem using a 10-fold cross-valida-
tion, even if our samples were small relative to other studies. The choice
of this cross-validation scheme naturally leads to a reduction in per-
formance, as the training set gets smaller, but gives on the same time a
less biased estimate of the performance. Moreover, it should be noted
that this is a quite unique dataset; we have well characterized PD and
MSA patients who underwent what is, to our knowledge, the most
complete multimodal MRI protocol in the literature. We hope that in
the future more centres specialized in movement disorders will acquire
the same sequences we did, allowing to test our pipeline on a much
bigger sample. Another limitation is related to the difficulty in the
differential diagnosis between MSA-p and PD. However, the diagnosis
for all patients have been confirmed at a 2-years follow up. A similar
problem is present for the differential diagnosis between MSA (espe-
cially MSA-p) and progressive supranuclear palsy (O’Sullivan et al.,
2008; Respondek et al., 2018; Wenning and Colosimo, 2010). Since
only histological post-mortem analysis confirms the diagnosis, a mis-
diagnosis is always possible. However, the high positive predictive
value of a clinical diagnosis of MSA should minimize this risk (Gilman
et al., 2008; Osaki et al., 2009). Note also that we could indeed dis-
criminate between MSA-c and MSA-p with our pipeline (supplementary
results 1.4 MSA-c vs MSA-p), finding discriminant clusters in the brain
regions with prominent neuropathological abnormalities in the two
subtypes (bilateral putamen and cerebellum). However, these results
should be interpreted with caution because of the small sample size. To
conclude, we found that our fully data-driven multimodal voxel-wise
pipeline could successfully discriminate between PD and HC, MSA and
HC, and PD and MSA while informing us on the most useful MRI in-
dexes and their localization to perform this discrimination. This pipe-
line could be easily applied to other degenerative conditions as well as
neurological or psychiatric disorders.
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